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Relaxation of synchronization on complex networks
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We study collective synchronization in a large number of coupled oscillators on various complex networks.
In particular, we focus on the relaxation dynamics of the synchronization, which is important from the view-
point of information transfer or the dynamics of system recovery from a perturbation. We measure the relax-
ation time 7 that is required to establish global synchronization by varying the structural properties of the
networks. It is found that the relaxation time in a strong-coupling regime (K> K,) logarithmically increases
with network size N, which is attributed to the initial random phase fluctuation given by O(N~'2). After
elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size;
this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation
dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived
in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an
application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.
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I. INTRODUCTION

Various oscillatory systems in nature—for example, bio-
logical systems such as flashing fireflies, chorusing crickets,
cardiac pacemaker cells in the heart, neurons in the brain,
and chemical and physical systems such as chemical oscilla-
tions and Josephson junction arrays—have been known to
exhibit remarkable phenomena of collective synchronization
[1-3]. In order to understand such synchronization behav-
iors, nonlinear coupled oscillators have been extensively
studied in diverse branches of science. Among the various
oscillator systems, a typical model was proposed and ana-
lyzed by Kuramoto [3-5]. The Kuramoto model, where N
limit-cycle oscillators are globally (all-to-all) coupled, has
been studied extensively due to its analytical tractability. Re-
cently, this model has attracted further attention due to the
experimental applications shown in a recent paper [2]. Thus
far, the Kuramoto model has been extended with many varia-
tions for applications in diverse systems. For example, ther-
mal noise, randomness in the coupling, external force, and
time-delayed coupling have been considered in the model,
and their effects have been explored [4-7].

Although the all-to-all coupling of the Kuramoto model is
analytically tractable and also applicable to some experimen-
tal systems, such type of connectivity has a limitation when
applied to most real systems. In other words, the interaction
(via the connectivity) among the components is neither very
regular nor random. Instead, most of the interactions appear
to be between these two extreme cases. Accordingly, we
need to consider such nontrivial connectivities in the system
and extend the study of synchronization to such intermediate
network topologies. The dynamics and structural properties
of complex networks have recently attracted considerable at-
tention as one of the approaches to understand complex sys-
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tems in diverse fields [8]. In particular, recent studies on the
synchronization of the Kuramoto-type coupled oscillators
embedded in complex networks have became representative
examples of the study of dynamics on networks. Thus far,
Kuramoto synchronies have been extensively studied in
terms of the possibility of synchronization transition, its criti-
cal behavior, finding of associated critical exponents, and
phase diagram along with the stability analysis of the fully
synchronized state [9,10]. In small-world (SW) networks
[11], for example, the synchronization transition occurs at a
finite critical coupling strength, even in the case of a very
small rewiring probability, and the critical behavior is found
to be the same as that of the globally coupled case. Synchro-
nizations have also been studied on scale-free (SF) networks
[12-15] with the degree distribution given by P(k)~k™7.
However, most of the studies on dynamical systems in com-
plex networks have focused on the stationary properties
rather than the dynamics, even though dynamics such as re-
laxation from the desynchronized state to the synchronized
state is very important from the viewpoint of information
transfer processes, formation of social consensus, and the
response of the system to external perturbations.

In the present paper, we report our study of collective
synchronization, with an emphasis on its relaxation dynam-
ics on various complex networks. A globally connected net-
work, SW network, and SF network are considered for the
investigation of the relaxation behavior. This paper is orga-
nized as follows. In Sec. II, a model system and the method
for measuring the relaxation time are explained. In Sec. III,
numerical results for each complex network are presented,
and Sec. IV presents simulation results for the globally con-
nected network and for the analytic approach. In Secs. V and
VI, the collapsing forms of the relaxation and recovery dy-
namics are presented; finally, Sec. VII summarizes our study.

II. MODEL SYSTEM

The dynamics of N coupled limit-cycle oscillators having
the phases { ¢,(t)|i=1,2,...,N} is described by the set of
equations
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ddo; K
- —
dt

N
_<k>]=21 a;j Sin(d’i‘d’j)- (1)

The first term w; on the right-hand side of Eq. (1) represents
the natural frequency of the ith oscillator, and it is assumed
to be randomly distributed according to a normal distribution
function that has the correlation (w;w;)=0?6; with variance
o” and zero mean ({w;)=0). The second term indicates the
coupling between the oscillators; the coupling strength is set
to a positive constant (K>0) so that the neighboring oscil-
lators prefer to minimize their phase difference. The adja-
cency matrix a;; is given by

(2)

1, if i and j are connected,
0, otherwise.

Further, (k) denotes the mean degree given by 2k;/ N, where
k;=2,a;;. We note that the average degree (k) and the cou-
pling strength K affect the evolving time scale, and therefore
they may change the relaxation time during the synchroniza-
tion process. For the case of the globally connected
network—for example, a;;=1 for all oscillators excluding
self-loops—this value yields (k)=N—1, which corresponds
to the original Kuramoto model [3]. Previous studies by
Kuramoto have shown that there exists a critical coupling
strength K.=2/1g(0) beyond which phase synchronization
emerges [3].

Collective phase synchronization is conveniently de-
scribed by the order parameter defined by

r(1) = ; 3)

N
LS oo
Nj:l

where (- ) denotes the average over different realizations of
intrinsic frequencies as well as networks. We investigate the
relaxation of the phase order parameter r(r) above K, which
describes the synchronization dynamics including the initial
transient behavior; we also measure the time required to es-
tablish global synchronization [10], which serves as a good
indicator for monitoring the information transfer or the sys-
tem recovery dynamics after a perturbation.

We perform numerical simulations using Eq. (1), where
the Gaussian distribution function given by g(w)
=(2ma?)"?exp(-w?/20?) with zero mean and unit variance
(02=1) is chosen for convenience. For the numerical inte-
gration, we used the Heun method [16] with a time step Az
=0.01. In order to avoid a numerical error, we compare our
numerical results with those of the fourth-order Runge-Kutta
methods with various time steps and we verified that there is
no difference under the limit of our simulated network size.
The initial phases of the oscillators are randomly chosen
from the interval [0,27r), which yields the fully desynchro-
nized phase (r=0), and the ordering relaxation from the de-
synchronized state to the synchronized state (r # 0) is exam-
ined. The phase order parameter r(z) is averaged over 1000
ensembles with different initial phases, natural frequencies,
and network realizations at each time. In order to measure
the time required for relaxation, we first normalize the order
parameter as
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A =—— (4)

such that 7(0)=1 and F(r—)=0, where ry=r(0) and r,
=lim,_,., (f). We then compute the average relaxation time
given by [11,17]

T,:f dr’ #(t"). (5)
0

We note that the average relaxation time 7, in Eq. (5) is a
convenient measure for probing the relaxation dynamics
since it is not only robust for obtaining the saturation time,
but also useful for a system with many relaxation time scales
[17]. However, for some other systems, the order parameter
r(f) may not monotonically converge to r,. Therefore, in
such cases, the method described in the present paper may
not be applicable. For convenience, we use the definitions of
both 7, and 7,2 since 7,2 is easily derived for the mean-field
case. We denote the relaxation time of 7> by 7,2 by using r*(7)
in Eq. (4).

III. RELAXATION ON COMPLEX NETWORKS

We consider complex networks such as SW and SF net-
works and investigate the relaxation dynamics on these net-
works by varying their structural properties. The SW and SF
networks are constructed following the procedure described
in Refs. [18-20]: (i) For the SW networks [18], we first
construct a one-dimensional regular network of size N with
m-range local connections (we fix m=3 for convenience—
i.e., the mean degree (k)=2m=6). Each link is visited once
and then removed with the rewiring probability P. Subse-
quently, it is reconnected to a randomly selected node, thus
avoiding self-loops and multiple links. Oscillators are lo-
cated at each node of the SW network, where a link between
two nodes represents the coupling (interaction) between the
two oscillators. (ii) The SF networks [19] are generated using
the static model [20]. Initially, N nodes are prepared without
links. The ith node has the prescribed probability p;
=i"#/Z;j#, where u is given by 1/(y—1) with the expected
degree exponent 7y of the degree distribution P(k)~k~?. In
order to add a link, we select two nodes i and j having the
probabilities p; and p;, respectively, and connected them
while avoiding self-loops and double links. Such a linking
process is repeated until the mean degree (k) becomes equal
to 6.

We perform numerical integrations of Eq. (1) for the SW
and SF networks. The temporal evolution of the phase order
parameter r(z) is shown in Figs. 1(a) and 1(c). It is found that
the relaxation time required for the oscillators on the SW
network logarithmically increases with the system size (7,2
~In N) [see Fig. 1(b)]. A smaller rewiring probability P is
found to yield slower relaxation dynamics. Similarly, the re-
laxation dynamics of the SF network also exhibits a logarith-
mic increasing behavior with an increase in the system size.
Furthermore, the relaxation behavior is found to strongly de-
pend on the heterogeneity of the SF network that is charac-
terized by the degree exponent 7y [see Fig. 1(d)] in such a
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FIG. 1. (Color online) Tempo-
ral evolution of the phase order
parameter r() for (a) SW network
and (c) SF network for K=5 and
N=6400 on a semilogarithmic
scale. Inset: the y axis is set as a
linear scale. The average relax-

ation time is shown by varying the
rewiring probability P and the de-
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= 'fg, g

gree exponent y for (b) SW net-
, works and (d) SF networks, re-
spectively.  The  logarithmic
1 dependence (7,2~1n N) is clearly
shown. The data for the case of a
globally coupled network are also
shown as a reference (see the
text).
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manner that a less heterogeneous network exhibits slower
dynamic behavior. In order to further study the origin of the
logarithmic relaxation time, we reexamine the original Kura-
moto model in the next section.

IV. RELAXATION ON ALL-TO-ALL CONNECTED
NETWORK

We consider the globally coupled oscillators of the Kura-
moto model. Figure 2 shows the time evolution of the order
parameter r(t) for the globally connected network in the
strong-coupling regime (K=5>K_) [21]. For small 1, it is
found that the phase order parameter r(r) shows an exponen-
tial growth that is well described by r(¢) ~ ry exp(\z), with
A=2.143 and system-size-dependent constant r,. A larger
system is found to attain global synchronization more slowly.
In Fig. 3, the relaxation time 7, is plotted as a function of the
network size N for various values of coupling strength K. We
also find that the relaxation time 7, increases logarithmically
with the network size (7,~1n N).

To understand such logarithmic dependence, we investi-
gate the transient behavior of the order parameter r(¢), which
has been analytically studied for the globally coupled oscil-
lator system. It is found that the time evolution of r(z) is
given by r(r) ~ry exp(\f), where \ is determined by the re-

lation [22]
| \/;K 22 R )
= ——eX — 5 |eric| ———
8o P\ 20 Lo

by using the complementary error function erfc(x). For cou-
pling strength K=5 and unit variance (0°=1), Eq. (6) yields
A=2.143, which corresponds to a slope of 0.931 in the y axis
of the base-10 logarithm, exhibiting a good agreement with
the slope shown in Fig. 2. The relaxation dynamics of this
particular order parameter is given by dr/dt=\r+br’
+O(r) for the case of a symmetric distribution of the intrin-
sic frequency, where b is a coefficient with a negative value

(6)

N 10°

in the supercritical regime (K> K,) [23]. We follow the re-
laxation dynamics derived by Crawford [23], retaining the
terms up to O(r3). Further, the coefficient b is obtained so as
to match the experimental observation. In a long-time limit,
r(z) attains the steady state r,. The coefficient b is then de-

termined to be —\/r%, and the equation of motion for r(z) is

written as
dr(t) ( r )
— =\l 1=, 7
dt " rf, @
which yields
2 rftré exp(2\1) g
r (t) - 2 2 2 . ( )
ry— 1o+ 1y exp(2\1)

For small #, r*(t) in Eq. (8) is approximated as r*(f)
=r? exp(2\1), which is Strogatz and Mirollo’s result [22].
The relaxation time is then easily found to be proportional to
In N:

- N=100
N=400
---- N=800 E
~=-== N=1600 ¢
10 —— N=25600

0 1 2 3 4 5 6 7

FIG. 2. (Color online) Phase order parameter r(z) is plotted as a
function of time ¢ for globally coupled networks for K=5 by vary-
ing the network size N. The red dotted line is a guide for the eye
with a slope of 0.931. Inset: the evolution of the normalized order
parameter 7(¢) vs time z.
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FIG. 3. Averaged relaxation time 7, is plotted as a function of
the system size N for various coupling strengths K (on the semi-
logarithmic scale) for the system of globally coupled oscillators,
displaying a logarithmic increase with the network size (7.~ In N).
Inset: the slope measured in the plot of 7, (7,2) vs K is shown, and
the solid line represents the theoretical prediction given by Eq. (6).

1 7 1
T2 = 5[In rf,— In rﬁ] = Rln N+ 7, 9)

=5 2
2N, —1g

where 7, is a constant independent of the network size N.
One can also observe that r%(¢) is a sigmoid function and Eq.
(8) is equivalent to

(1) B 1
P2 l+exp[-2N(t—-1.)]

st

(10)

with 7,, where 7, is a single constant, r*(r,)=r2/2, and 7,2
=t. for large N since the sigmoid function has a point sym-
metry and the integral of Eq. (5) becomes ..

As expected, the initial phase order parameter is given by
ro~ O(N~12) since the N initial phases of the oscillators are
randomly scattered. On the other hand, r,, is size independent
for large N, and it saturates near 1, as shown in Eq. (9).
Therefore, it is evident that the origin of the logarithmic
increase in the relaxation time lies in the initial random
phases. In order to confirm this, we first investigate the pos-
sibility of the collapsing of all the data when they are shifted
by an amount equal to the relaxation time along the time
axis. It is observed that the data correspond to a curve that
strongly supports our prediction (see Fig. 4). We also verify
the collapse of all lines into a single sigmoid function, which
is represented by Eq. (8), with the exception of the over-
shooting that occurs near the saturation time due to the ne-
glected O(r) terms. Second, we examine how the result is
changed when networks with different sizes begin at the
same value of ry. In order to set the same value of r, for
different system size N, we removed the N dependence of the
initial value of the order parameter r, in following manner.
We generate N=100 random numbers for the initial phase
¢;(0). In order to assign 200 random phases to N, we first
generate 100 random numbers and then use them twice. In
other words, we select only 100 random numbers and reuse
them N/100 times. In this manner, we simply suppress the
initial fluctuation in r;, maintaining a constant value that is
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FIG. 4. (Color online) Time-shifted %(7) is plotted as a function
of time 7. Each curve of Fig. 2 is shifted along the x axis as the
difference of the relaxation time from that of N=25 600. The red
line corresponds to Eq. (8). All data points lie along a single curve.
Inset: for different networks sizes, r(z) starts from the same initial
value r( by restricting the number of possible initial phases in
which all the data points collapse along a curve.

independent of the system size N. The suppression of the
fluctuation in the initial phases is found to result in the dis-
appearance of the logarithmic dependence for the relaxation
time. This is also numerically confirmed (see the inset of Fig.
4). These two results support the fact that the logarithmic
behavior of the relaxation time is actually attributed to the
fluctuation in the initial phases.

V. COLLAPSING OF THE RELAXATION DYNAMICS

On the assumption that the topological differences in net-
works do not significantly alter the evolution of the synchro-
nization order parameter, but alter the speed at which global
synchronization is attained, we investigate the collapsing of
the relaxation dynamics given by Eq. (10) for various com-
plex networks. We examine the data collapse by varying the
control parameters a and 7. in rz(t)=rft/ {1 +exp[-2\ (¢
—t.)/al}, where a tunes the synchronization speed by divid-
ing the exponential growth rate N\ and ¢, corresponds to the
relaxation time for each complex network. As shown in Fig.
5, all the data points for various complex networks with dif-
ferent system sizes from N=100 to N=25 600 are found to
exhibit a good collapse on a single sigmoid function. The
scaling constants a and ¢, are measured for various values of
the rewiring probability P and degree exponent 7y. Figure 6
shows the control parameters a and ¢, as a function of P and
y. When the rewiring probability P of the SW networks de-
creases, f. and a rapidly increase near P=0 [see Fig. 6(a)]
and become saturated for large-P regimes. For the SF net-
works, this rapidly increasing behavior is observed from the
region of small 7y to large v, but it is eventually saturated in
the large-vy regime [see Fig. 6(b)]; this is similar to the case
of SW networks. It is interesting to note that the oscillators
on the SW and SF networks are influenced only by the near-
est neighbors via local interactions; however, the relaxation
behavior is similar to that of globally connected networks.
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FIG. 5. (Color online) Collapse of the data r%(1)/r7, for different
network sizes of SW and SF networks is shown, displaying a good
coincidence in one sigmoid function with the control parameter a
and 7. The red line is an amplitude evolution line of the globally
connected network, and it is provided as a reference.

When the coupling strength K approaches to K.+A (A
>(), the relaxation time increases; however, our result re-
mains valid, as shown in Fig. 3. At the region very close to
K., on the other hand, the size of the synchronized cluster
becomes unstable and the order parameter value is very
small; furthermore, the fluctuation by the desynchronized os-
cillators becomes relevant. Therefore, the validity of our re-
sult in the regime very close to K, is not obvious. Further, the
relaxation dynamics at the critical point K, is found to show
a totally different behavior, exhibiting a power-law decay
instead of an exponential one [24].

VI. RECOVERY FROM A PERTURBATION

In this section, we consider the recovery dynamics of the
oscillators when a perturbation enters the system. From a

a
( )16 : . — . (b) 5 T L — T
SW —o—t SF
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/
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o .|\ ®©
.8 B 1 - OO0
o \ .| O o0
‘HO a2+ | O _
o T~
m]
al - a u]
O... L i
o 1
1 1 1 1 1 0 1 1 1 1
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FIG. 6. (Color online) Relaxation time 7, and control parameter
a for (a) SW network and (b) SF network for K=5 and N=6400.
The control parameter «a is independent of the network size N and
only depends on the network topology and coupling strength K. The
control parameter 7. is linearly proportional to the relaxation time
7,2. Therefore, ¢, also shows a logarithmic increasing tendency with
the network size.
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FIG. 7. (Color online) Response of the system to a perturbation
is plotted for various network sizes. From the steady state, each
oscillator is reset to the random phase with a damage probability D
for (a) SW networks and (b) SF networks. The legend of (a) is
identical to that of (b).

different viewpoint, oscillators with completely random
phases could be considered to lose the entire phase informa-
tion of the synchronized system; i.e., 100% damage is done
to the system. Since the system is in the strong-coupling
regime, it will eventually return to the synchronized state.
However, if a synchronized system sustains partial damage,
it is of interest to know how fast the system recovers its
normal state. We have probed the network size dependence
of the recovery time under a partial perturbation. The oscil-
lators are launched from a random initial condition with a
strong-coupling strength K> K. After the system attains the
steady state, oscillators that are randomly selected with a
probability D will be perturbed. In other words, each oscil-
lator loses its phase information with a damage probability D
and is assigned a random phase. We then observe the dynam-
ics during the recovery to the synchronized state for different
network sizes and different damage probabilities D for 1000
ensembles. The results are shown in Fig. 7; the recovery
dynamics after perturbation is also independent of the net-
work size N since the initial condition r is identical for the
same value of D when D is sufficiently small, which is con-
sistent with the result of the previous sections. When the
damage approaches 1, the logarithmic size dependence ap-
pears, as shown in Fig. 8. This is because even the effect of
the fluctuation given by O(N~"?) is small as compared to
ro=1 in the small-D regime. On the other hand, the effect of
fluctuations in the large-D regime increases as compared to
ro=0. It is found that the recovery time is independent of the
system size when the damage is small, but depends on the
dimensions of the damaged part.

In addition, to sustaining damage to the SF networks, we
consider two different methods according to the degree pref-
erence. It is well known that a node with a large degree (hub)
causes greater damage to the integrity and characteristic path
length (CPL) of the network [25]. Since the importance of
each node in the SF networks is different depending on its
degree, the tendency of synchronization can also be changed
by using the degree of the damaged node. The phase infor-
mation of each node is erased beginning from the node with
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FIG. 8. (Color online) Relaxation time 7, under damage D for
different sizes of SF networks (y=5). The network size dependence
of the relaxation time appears only in the regime of large damage D
near 1. Inset: relaxation time dependence for different types of node
damages (N=6400). When large (small) degree nodes are damaged
first, the system recovers faster (slower) than random damaging at
the small-D regime; however, at the large-D regime, it is vice versa.

the smallest (largest) degree in increasing (decreasing) order
until [DN] nodes are damaged. These two different methods
apparently alter the speed of recovery (relaxation time), but
the relaxation time remains almost independent of the system
size. It is interesting to note that when damages are first
sustained by a node with a large degree, the system recovers
the normal state earlier than in the case of random node
damage for small D values. However, at large D values, the
degree preference damage induces heavier shocks in the sys-
tem as compared to those by a random damage (see the inset
of Fig. 8). The ratio of the relaxation time difference of each
degree preferential damaging method to that of the random
damaging method shows this behavior more clearly (see Fig.
9). The positive (negative) value implies slower (faster) re-
covery as compared to random damaging. When the hub
nodes are damaged first, contrary to our expectation, the sys-
tem recovers faster than in any other case, which is similar to
the result in the Ref. [12], where the authors change the
phase of a node by 7 after the synchronization process at-
tains the steady state and measure the average time required
for a node to again be in the synchronized cluster as a func-
tion of its degree. Even in the extreme case D=1/N of our
simulation, the result can be explained by the same argu-
ment. This is because when the hubs are damaged, their
neighbors provide the same phase information and the ran-
dom phase of the hub is absorbed by many neighbors in a
manner similar to a buffer. Moreover, the hub node rapidly
shifts to the steady phase since hubs have more connections
than average, which implies that the effective coupling
strength of a hub is larger than the average value. However,
when a large damage D is first introduced in the system
through a large-k node, the population of undamaged neigh-
bor nodes is not sufficient to recover the system. In such
cases of severe damage, the survival of the large-degree
nodes is advantageous. Therefore, in the large-D regime, the
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FIG. 9. (Color online) Ratio of the relaxation time difference for
the degree preferential method to that for the random damaging
method.

relaxation time difference ratio

system in which a node with a small degree is first damaged
recovers more quickly.

VII. SUMMARY AND DISCUSSION

In summary, we investigated the relaxation dynamics of
synchronization in a large number of coupled oscillators on
various complex networks. We considered SW and SF net-
works as well as all-to-all connected networks (complete
graph) and explored the relaxation behavior of the phase or-
der parameter r(z) from the desynchronized state to the syn-
chronized state. Following Crawford’s analysis, we derived
the evolution equation of 7%(f) in a globally coupled network;
the results obtained from this equation showed good consis-
tency with the numerical simulation results. We find that the
relaxation time for the globally connected network increases
logarithmically with network size. Moreover, for the SW and
SF networks, it is observed that the relaxation times exhibit
similar logarithmic behaviors. We find that such a logarith-
mic increase is attributed to the contribution from the ran-
domness of the initial phases. The collapsing form of the
relaxation dynamics is also derived, and it exhibits good
agreement with the numerical simulations. As an application,
we explore the recovery dynamics of the oscillators when
perturbations enter the system.

It is of interest to know whether the logarithmic increase
in the relaxation time on complex networks can be attributed
to the increase in the CPL or the diameter of the networks
because they exhibit a similar logarithmic increase (¢
~1In N). While traversing the path to synchronization, each
oscillator attempts to minimize the phase difference relative
to its neighbors’ phase. This minimizing process can be in-
terpreted as the oscillators interchanging phase information
among themselves through the networks. Therefore, one may
consider that the relaxation time depends on the CPL or the
diameter of the network through which information initiated
from an oscillator spreads to all the oscillators. In order to
verify this, we measure the CPL for various degree expo-
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nents and investigate the correlation between these two
quantities. However, interestingly, we observe that the loga-
rithmic increase in the relaxation time results from the ran-
domness of the initial phase and not from the logarithmically
increasing behavior of the CPL. If we consider the all-to-all
connected network, it is more obvious since the CPL of the
globally connected network is exactly equal to 1 (€=1), in-
dependent of the network size N. Therefore, the logarithmic
dependence does not originate from the system-size-
dependent CPL.

It is very important to know how synchronization emerges
globally and also examine how local nucleation occurs. Un-
fortunately, in this study, we did not follow the local events
since we have used the global order parameter. Recent papers
suggest a method for observing how the local patterns of
synchronization emerge [26]. It is necessary to combine the
global and microscopic aspects involved in attaining syn-
chronization since this would be valuable as a future study.

While preparing this paper, we learned of a study by Al-
mendral and Diaz-Guilera [27], which partly overlaps with
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ours. They show that the synchronization time depends on
the smallest nonzero eigenvalue of the Laplacian matrix in
the complete synchronization problem. Interestingly, the syn-
chronization time dependence relation is basically similar to
our derivation, Eq. (5). However, in our study, we focus on
the dependence of the synchronization time on the network
topology and system size N for the Kuramoto model of the
partial synchronization problem with a more general Gauss-
ian distribution of natural frequencies. It is of great interest
that the argument about the synchronization time dependence
on network topology can be extended to general synchroni-
zation problems.
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